

Model Answer: Winter-2018

Subject: Concrete Technology

Sub. Code: 22305

ENGINEERING

Sub. Code: 22505

Important Instructions to examiners

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	(A) a) Ans.	Attempt any <u>FIVE</u> of the following : List four physical properties of OPC. Physical properties of OPC: i. Fineness ii. Standard consistency or Normal consistency iii. Initial and Final setting time iv. Soundness v. Compressive Strength	¹ / ₂ each (any four)	10 2
	b) Ans.	Define bulking of sand. Bulking of sand is defined as increase in volume of given sand due to surface moisture present on surface of particles.	2	2
	c) Ans.	State Duff Abraham's water cement ratio law. Duff Abraham's Law: For workable concrete, the compressive strength of concrete depends only on water-cement ratio.	2	2
	d) Ans.	 Name four methods of concrete mix design. i. Arbitrary proportion method ii. Maximum density method iii. Fineness modulus method iv. ACI Committee 211 method v. Road note no. 4 method (Grading Curve Method) vi. Indian road congress method (IRC - 44) vii. High strength concrete mix design method viii. Indian Standard method (IS 10262: 2009) ix. Trial and error method x. Surface area method 	¹ / ₂ each (any four)	2

Model Answer: Winter-2018

Subject: Concrete Technology

Sub. Code: 22305

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
Q. 1		 xi. Mix design based on flexural strength xii. 12.British DOE mix design method (Department of Environment) 		
	e) Ans.	In sequence, write concreting operations. i. Batching of materials ii. Mixing of materials iii. Transportation of concrete iv. Placing of concrete v. Compaction of concrete vi. Curing of concrete vii. Finishing of concrete	2	2
	f) Ans.	State two purposes of using accelerating admixtures in the concrete.	1 each	2
		 i. To accelerate the initial setting of concrete ii. Permit early removal of formwork in cold climate. iii. Reduce the required period of curing, iv. Speed of the work can be boosted by early removal of formwork 	(any two)	
	g)	State two uses of low heat cement.	1	
	Ans.	 i. It is used for mass concrete works such as dams. ii. It is used for cracks resistant structures. iii. It is used for sulphate resistant structures. iv. It used in concreting of nuclear power plant, sea walts, break waters, etc. 	each (any two)	2
		Attempt any <u>THREE</u> of the following :		12
Q.2	a)	Explain the method to determine initial and final setting time of cement.		
	Ans.	Procedure:		
		i. Take 400 gm. of cement sample and add 0.85 times water required for its standard consistency to prepare homogenous cement paste. Note down the time at which water is added to cement as T_1 min.	4	4
		ii. Fill this cement paste in Vicat's mould. Keep this mould under Vicat's apparatus with IST needle attached to it.		
		iii. Now allow the IST needle to penetrate in the paste by realize pin observe the total penetration. If the penetration is not 33		

Model Answer: Winter-2018

Subject: Concrete Technology

Que. No.	Sub. Que.		Model Answers				Marks	Total Marks
Q.2	Que.		5 mm from top then change the face.	e positio	n of per	netration		WIIIKS
			e down the time at which IST n etration as T_2 min. Hence calce.		-	-		
		v. IST	$= T_2 - T_1 \min.$					
		-	ace IST needle with FST needle etrate in same cement paste.	and allo	w FST r	needle to		
			e down the time at which FST r ression on a cement surface as T_3		ill give	the Just		
		viii. Calc	ulate final setting time i.e. FST =	T_3-T_1 m	nin.			
	b) Ans.	Classification As per size ag i. Coars 4.75 ii. Fine is co Classification As per shape i. Roun attri ii. Irreg	aggregate based on its size and of aggregate according to Size: ggregates are divided into two cat se Aggregate: The aggregate horized as coarse aggre Aggregate: The aggregate whose onsidered as fine aggregate. In of aggregate according to sha aggregates are divided into four of ded: This type of aggregate is tion or water worn. ular or partly rounded: This urally irregular or partly shaped b	tegories: naving s egate. e size is 4 pe: categorie s comple s type o	ize bigg 4.75mm ess: etely sh of aggr	and less aped by	2	4
		iii. Angu edge iv. Flak thic	lar : This type of aggregate conta es formed at intersection of rough y and elongated: This type of kness as compared to width or lease e average crushing value of ag	ins well ly planer aggrega ngth.	defined faces. te havin	-		
	c)		ite its suitability. Description	A	B	C		
		Sr. No.	Weight of oven dried	A 3119	Б 3246	3184		
			sample					
		2	Weight of fraction passing 2.36mmI.S. Sieve	575	581	598		
	Ans.	To find aggre	egate crushing value,	1	1			
		%ACV= <u>Wei</u>	ight of agg.passing through 2.36n Weight of oven dried aggregat		<u>eve</u> X 1	00		
			OUR CENTERS :				_	

Model Answer: Winter-2018

Sub. Code: 22305

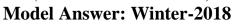
Subject: Concrete Technology

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2		For observation I: %ACV= (575/3119)x100 = 18.43%	3	
		For observation II: %ACV= (581/3246)x100 = 17.89%		
		For observation III:		4
		%ACV= (598/3184)x100 = 18.78%		-
		To find average crushing value of given aggregate Average $%$ ACV = (18.43+17.89+18.78)/3		
		Average %ACV = 18.36%		
		Suitability: As the % ACV is 18.36%, which is less than 30%, hence the given sample of aggregate is suitable for non-wearing surfaces li roadways, runways etc.		
	d)	A sand sample has a fineness modulus of 1.95. Whether this san can be used for concreting? Explain the procedure to bring the fineness modulus in required permissible limits. State is importance.	he	
	Ans.	The given sand sample has a fineness modulus 1.95, which is less the prescribed limit i.e.2.2-3.2. It indicates that sand particles are fine which is not suitable for satisfactory concreting work.		
		Procedure to bring FM in prescribed limits:		
		 The cumulative % retained of tested sand sample should increased by adding sand particles which are having less % retained in the calculation. 		4
		ii. When quantity of such sand particles are increased, the FM of sand will be in the above mentioned range, which also considered as well graded sand sample.		
		Importance of FM:		
		i. Fineness modulus of sand should be 2.2 to 2.6 for fine sand, which is helpful for minimizing voids ratio and increasing density of concrete mass.		
		ii. Well graded sand is also useful for good bonding particles and related strength criteria of concrete.	of	
		OUR CENTERS :		

Model Answer: Winter-2018

Subject: Concrete Technology

Que. No.	Sub. Que.			Model An	swers		Marks	Total Marks
Q.3	a)	-	e cor	<u>REE</u> of the following the second structure of the second s	0	g degree of		12
	Ans.		Sr. No.	Degree of workability	Compaction factor		1	4
			i	Medium	0.92	-	each	
			ii	High	0.95			
			iii	Very low	0.78			
			iv	Low	0.85			
		If co conc stren aggr stren with	oarse a crete n ngth m egate a ngth of comb	gregate: ggregate particles a nixture , then cor nay reduce due to are of smaller sizes concrete will be le ination of both size cable concrete and t	horete becomes ha honey combing. only (say 10 mm). esser. Therefore co es (i.e. 10 and 20 m	rsh and only But if coarse Then ultimate arse aggregate mm) will give	1 each (any four)	4
		ii. Shaj	pe of a	iggregate:				
		inter com angu	lockin pressiv ılar or	f concrete aggrega g of aggregate p ve strength. If sha sub rounded then c ding between partic	particles. Hence in ape of coarse agg compressive strengt	t gives more gregate is sub		
		iii. Surl	face te	xture:				
		inter	locked	re of coarse aggres strongly than s f same cement slurr	smooth textured			


Model Answer: Winter-2018

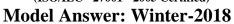
Subject: Concrete Technology

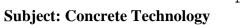
Que. No.	Sub. Que.		Model	Answers	Marks	Total Marks
Q.3	Que.	iv. W	Vater absorption:			WIAIKS
		pi re bo (Note: Oi	rescribed limit, then conduction of strength. But ecomes as per proportion	n of coarse aggregate is more than concrete becomes harsh result in if water absorption is less concrete giving required strength. <i>The properties of coarse aggregate</i>		
	c)	-	the procedure for mea using slump cone test.	asurement of workability of fresh		
	Ans.	ii. Province in the second sec	lean the mould from insid lace the mould on smoot urface or the centre of me ill the mould with the c mping each layer 25 tim hat the strokes are evenly emove the mould by one he concrete subsides and leasure the slump in mmone.	th horizontal, rigid & non-absorbent etallic tray. concrete to be tested in four layers, les with the tamping rod, taking care		
		Sr. No. 1 2 3 4	Slump (mm) 0-25 25-50 50-100 100-175	Degree of workability Very low Low Medium High	4	4
	d) Ans.	four)	 v of supervision for concr Supervision is neces operations in standard It is necessary to avoid It is also beneficial to concreting. It is required to get ove Supervision becomes e of concreting operation 	ssary to complete all concreting	1 each (any four)	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Sub. Code: 22305

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.4	Que.	Attempt any <u>THREE</u> of the following:		12 Narks
	a)	Explain the importance of water/cement ratio in the concrete mix.		
	Ans. b)	 Importance of water/cement ratio in the concrete mix : The W/C ratio plays very vital role in concrete mixture. The improper or random selection of W/C ratio leads in various defects in fresh and hardened concrete. If W/C ratio is less (say w/c= 1/4 = 0.25), then concrete will become harsh and results in honeycombing or porous nature due to poor workability. If w/c ratio is more (say w/c = 3/4 = 0.75), then concrete undergoes segregation and bleeding. Thus finally concrete shows defects in it. Therefore w/c ratio should be optimum, which depends on grade of concrete and exposure conditions hence w/c ratio should be selected from IS: 456:2000. If w/c ratio is opted out properly as mentioned above, then concrete possess good workability, compressive strength and durability ultimately. Write four objectives of concrete mix design.	1 each (any four)	4
	Ans. c)	 i. To achieve a specified compressive strength of concrete. ii. To reduce wastage of concrete by correct proportioning. iii. To achieve economy by selecting appropriate concrete ingredients. iv. To maintain workability of concrete mix throughout work. v. To obtain maximum possible yield per bag of cement. vi. To ensure less defects and enhanced durability of concrete. Describe four characteristics of ready mix concrete.	1 each (any four)	4
	Ans.	 Characteristics of ready mix concrete: i. RMC can be ordered in bulk amount at a time. ii. It has more homogeneity as compared to other concrete. iii. It becomes economical in large project. 	1 each (any four)	4

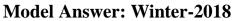

Model Answer: Winter-2018


Subject: Concrete Technology

Sub. Code: 22305

-	 iv. It can be easily transported at a longer distance without setting of concrete. v. Quality of concrete is uniform and high. vi. Useful in urban areas where it is lack of space. vii. No dust and noise pollution. Explain four effects of hot weather on concrete. Effects of hot weather on concrete: i. Due to hot weather, concrete shows rapid rate of hardening, which results difficulty in transportation of concrete. ii. Water from concrete mix gets evaporated fastly, which results on w/c ratio and less workability of concrete. iii. Water may get absorbed by formwork, aggregate or ground due to excessive heat. iv. More shrinkage cracks get developed on concrete surface due 	1 each	Marks
	 vi. Useful in urban areas where it is lack of space. vii. No dust and noise pollution. Explain four effects of hot weather on concrete. Effects of hot weather on concrete: Due to hot weather, concrete shows rapid rate of hardening, which results difficulty in transportation of concrete. Water from concrete mix gets evaporated fastly, which results on w/c ratio and less workability of concrete. Water may get absorbed by formwork, aggregate or ground due to excessive heat. 	-	
	 vii. No dust and noise pollution. Explain four effects of hot weather on concrete. Effects of hot weather on concrete: Due to hot weather, concrete shows rapid rate of hardening, which results difficulty in transportation of concrete. Water from concrete mix gets evaporated fastly, which results on w/c ratio and less workability of concrete. Water may get absorbed by formwork, aggregate or ground due to excessive heat. More shrinkage cracks get developed on concrete surface due 	-	
	 Explain four effects of hot weather on concrete. Effects of hot weather on concrete: Due to hot weather, concrete shows rapid rate of hardening, which results difficulty in transportation of concrete. Water from concrete mix gets evaporated fastly, which results on w/c ratio and less workability of concrete. Water may get absorbed by formwork, aggregate or ground due to excessive heat. More shrinkage cracks get developed on concrete surface due 	-	
	 Effects of hot weather on concrete: i. Due to hot weather, concrete shows rapid rate of hardening, which results difficulty in transportation of concrete. ii. Water from concrete mix gets evaporated fastly, which results on w/c ratio and less workability of concrete. iii. Water may get absorbed by formwork, aggregate or ground due to excessive heat. iv. More shrinkage cracks get developed on concrete surface due 	-	
Ans.	 i. Due to hot weather, concrete shows rapid rate of hardening, which results difficulty in transportation of concrete. ii. Water from concrete mix gets evaporated fastly, which results on w/c ratio and less workability of concrete. iii. Water may get absorbed by formwork, aggregate or ground due to excessive heat. iv. More shrinkage cracks get developed on concrete surface due 	-	
	 which results difficulty in transportation of concrete. ii. Water from concrete mix gets evaporated fastly, which results on w/c ratio and less workability of concrete. iii. Water may get absorbed by formwork, aggregate or ground due to excessive heat. iv. More shrinkage cracks get developed on concrete surface due 	-	
	to incomplete hydration with less water in concrete. Hence, early finishing becomes more essential.	(any four)	4
	v. Continuous curing is required to keep humidity and to avoid further development of cracks.vi. Air entrained in concrete may get expelled due to temperature, hence workability may reduce additionally.		
U)	Write two advantages and two disadvantages of vacuum de- watered concrete floor.		
Ans.	Advantages of vacuum de-watered concrete floor:		
	i. It reduces the time for finishing the floor.		
	ii. Smooth and clean finish surface.	1	
	iii. It reduce permeability and increase durability of concrete floor	each	
	iv. Increase the strength of concrete. Compressive strength is increased by 10 to 50%.	(any two)	
	v. Decrease the total shrinkage.		
	Disadvantages of vacuum de-watered concrete floor:		4
	i. High initial cost.	1	
	ii. It required specific equipment.	each (any two)	
	ns.	 further development of cracks. vi. Air entrained in concrete may get expelled due to temperature, hence workability may reduce additionally. Write two advantages and two disadvantages of vacuum dewatered concrete floor. Advantages of vacuum de-watered concrete floor: i. It reduces the time for finishing the floor. ii. Smooth and clean finish surface. iii. It reduce permeability and increase durability of concrete floor iv. Increase the strength of concrete. Compressive strength is increased by 10 to 50%. v. Decrease the total shrinkage. Disadvantages of vacuum de-watered concrete floor: i. High initial cost. ii. It required specific equipment. 	further development of cracks.vi. Air entrained in concrete may get expelled due to temperature, hence workability may reduce additionally.e)Write two advantages and two disadvantages of vacuum de- watered concrete floor.ms.Advantages of vacuum de-watered concrete floor: i. It reduces the time for finishing the floor.ii.Smooth and clean finish surface.iii.It reduce permeability and increase durability of concrete floor iv. Increase the strength of concrete. Compressive strength is increased by 10 to 50%.v.Decrease the total shrinkage.Disadvantages of vacuum de-watered concrete floor: i. High initial cost.ii.It required specific equipment.

Sub. Code: 22305


E

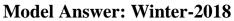
1 I I CR

DEGREE & DIPLOMA ENGINEERING

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.4	Que.	iii. The porosity which there in the concrete allows water, oil and grease to seep into thereby weakening the structure.		Warks
		iv. Joint can also weaken the concrete.		
		v. Abrasion can cause dust and cleanliness problem.		
Q.5		Attempt any <u>TWO</u> of the following:		12
	a)	Explain the laboratory procedure to determine the compressive strength of concrete cubes as per IS-516-1959 with reference to following points:		
		i. Preparation of test specimen		
		ii. Procedure of testing		
		iii. Interpretation of results		
	Ans.	Preparation of test specimen:		
		i. Take three cubes of 15 cm sides and apply oil to its inner	2	
		 surface. ii. Prepare the concrete mixture of required grade and fill it in each mould in 3 layers. Compact each layer 25 times with 16 mm dia_steel rod. 	2	
		 iii. Keep all the moulds at room temperature for 24 hrs for initial hardening and at relative humidity 90%. iv. Remove cube moulds and keep concrete cubes under fresh 		
		water for curing for 7, 14, 21, 28 days. Procedure of testing:		
		i. Remove cube from water after curing period and keep it		
		 ii. Apply load at a rate of 35 N/mm2/min for 10 minutes or till failure load in N by cross sectional area of cube in 	2	6
		iii. Finally calculate compressive strength of cubes as failure load in N by cross sectional area of cube in mm2.		
		iv. The average of three test cubes can be calculated as average compressive strength in MPa		
		Interpretation of results:		
		i. If the calculated compressive strength is less than the grade of concrete used, then concrete can be rejected at site.	2	
		 When such strength is found more (say 23N/mm²⁾ than the specified grade M20, then that concrete is safe and good for construction. 	_	

Subject: Concrete Technology

Que.	Sub.	Model Answers	Marks	Total Morke
<u>10.</u> 2.5	Que.	Explain the rebound hammer test procedure and show the		Marks
2.3	0)	relationship between compressive strength and rebound number with hammer horizontal and vertical on dry and wet surface of concrete.		
	Ans.	Rebound Hammer Test:		
		i. Initially the plunger of rebound hammer is Kept touching to the target concrete surface		
		ii. Then the tubular casing of hammer is pushed towards concrete, so that the spring gets wind up around the	4	
		plungeriii. Now release the mass attached to plunger using dash pot, so that hammer will impact on concrete surface and		
		rebound back depending on strength of concrete.iv. Due to backward motion of hammer, pointer on graduated		
		scale will move in same direction. v. Observe the distance travelled by pointer/rider on		6
		graduated scale as rebound Number.		U
		vi. If this rebound Number is less, the strength of concrete will be less, But if it is more, then concrete possess sufficient		
		strength.		
		40 Hammer horizontal		
		35-		
			2	
		45 25 Hammer vertically		
		(edw) 45 45 45 45 45 45 45 45 45 45		
		Hammer vertically		
		8 10		
		5		
		0		
		0 10 20 30 40 50 Rebound number		
		Fig. Relationship between Compressive Strength and Rebound Number		
		OUR CENTERS :		


Model Answer: Winter-2018

Subject: Concrete Technology

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.5	c) Ans.	Explain the ultrasonic pulse velocity test and techniques of measuring pulse velocity through concrete. Procedure:		
		 i. Ultrasonic pulse velocity method consists of measuring the time travel of an ultrasonic pulse passing through the concrete to be tested. ii. The pulse generated circuit consists of electronic circuit for generating pulses and a transducer for transforming these electronic pulses into mechanical energy having vibration frequency in the range of 15 to 50 kHz. iii. The time travel between the initial path and the reception of the pulse is measured electronically. iv. The path length between transducer divided by the time of travel gives the average velocity of the wave propagation. PUNDIT (Portable Ultrasonic Non Destructive Digital Indicating Tester) is a battery operated fully digitized instrument which is generally used for measuring ultrasonic pulse velocity. 	3	
		 Techniques of measuring Pulse velocity through concrete : a) Direct transmission: The transmitting and receiving transducers are placed on opposite surfaces of the concrete slab. This will give maximum sensitivity and provide a well-defined path length 	1	6
		(a) Direct or cross transmission		
		 b) Indirect transmission: The transmitting and receiving transducers are placed on adjacent surfaces of the concrete slab. 	1	

Sub. Code: 22305

Subject: Concrete Technology

	0.1			T (1
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.5		c) Surface transmission: The transmitting and receiving transducers are placed on same surfaces of the concrete slab Image: Constraint of the concrete slab	1	
Q.6		Attempt any <u>TWO</u> of the following:		12
	a)	Write four requirements of good formwork and draw a sketch showing cross section of formwork for a L-shaped column		
	Ans.	 showing cross section of formwork for a L-shaped column. i. It should be strong enough to resist the weight of concrete, workers and machinery. ii. It should be economical compared to total cost of construction. iii. It should be possible to use the formwork for more number of times. iv. It should be possible to use the formwork for more number of times. iv. It should be possible to erect and dismantle the formwork very easily. vi. It should be easily and locally available. vii. It should be easily and locally available. vii. It should be easily and locally available. vii. It should be rigid enough to retain its shape without deflection or bulging. 	1 each (any four)	6

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Model Answer: Winter-2018

Subject: Concrete Technology

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.6	b)	Suggest one type of materials for water proofing for the following		
		situations.		
		i. Rising dampness in building		
		ii. Leakages in dam		
		iii. Concrete continuously in wet or damp condition		
		iv. Leakages in lavatory ,bathroom and kitchen floor		
		v. Cracks on plastered surface		
		vi. Cracks on roof surface		
	Ans.	i. Flexible materials like butyl rubber, hot bitumen (asphalt),		
	Alls.	plastic sheets, bituminous felts, sheets of lead.		
			1	6
		ii. Liquid applied cementitious membranes	1	6
		iii. Liquid applied cementitious membranes	each	
		iv. Liquid applied cementitious membranes, liquid applied latex		
		membranes, brick bat coba, liquid applied bituminous		
		membrane.		
		v. Liquid applied cementitious membranes.		
		vi. Brick bat coba, liquid applied bituminous membrane.		
	c)	Suggest the type of joints in concrete when it is likely to increase in		
		volume due to temperature change. Explain it and draw its neat		
		sketch.		
	Ans.	When it is likely to increase in volume due to temperature change		
		expansion joint is constructed.	1	
		i. Expansion joints are provided by keeping a gap between panels		
		of concrete and later sealing it		
		ii. The joint which is provided to present the expansion in		
		concrete caused due to thermal stresses.		
		iii. These stresses produce due to extreme temperature conditions.		6
		The typical expansion joint is provided with dowel bars at a	3	U
		depth equal to half of slab thickness.	5	
		iv. This dowel of 20 mm diameter and 550 mm long is covered		
		with metal cap filled with cotton and finally such joint is sealed		
		using sealants like wood, thermocol or bitumen.		
		- 20mm		
		Compressible filler-board 20mm thick Dowel bars 20mm dia. x 550mm long at 300mm centres (half of each bar to be debonded)		
		Expansion Joint with Load-Transfer Device		
		Expansion joint filler \rightarrow $ \leftarrow 12mm$ to 25 mm		
			2	
		20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
		Expansion Joint Without Load-Transfer Device		
		Fig. Expansion Joint		